Investigations of the EPR Parameters and Defect Structures of Two Types of Trigonal Cr³⁺ Centers in CsMgCl₃, CsMgBr₃ and CsCdBr₃ Crystals

Lv He^a, Xiao-Xuan Wu^{a,b,c}, Wen-Chen Zheng^{a,c}, and Yang Mei^a

a Department of Material Science, Sichuan University, Chengdu 610064, People's Republic of China
b Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307,
People's Republic of China

c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China

Reprint requests to Prof. W.-C. Z.; Fax: +86-28-85416050; E-mail: zhengwc1@163.com Z. Naturforsch. **60a**, 823 – 826 (2005); received June 7, 2005

The EPR g factors g_{\parallel} , g_{\perp} and zero-field splitting D of trigonal Cr^{3+} - M^+ ($M^+ = Li^+$, Cu^+ , Na^+) and Cr^{3+} - V_B - M^{3+} ($M^{3+} = Cr^{3+}$, In^{3+} , Sc^{3+} , Y^{3+} , Lu^{3+} ; V_B denotes the B^{2+} vacancy) centers in some $CsBX_3$ (B = Mg, Cd; X = Cl, Br) crystals are calculated from high-order perturbation formulas based on the two-spin-orbit coupling parameter model of the $3d^3$ ion in trigonal symmetry. From the calculations, these EPR parameters are reasonably explained and the local lattice distortions caused

by the charge compensators M⁺ or V_B are estimated. The results are discussed.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand-field Theory; Defect Structure; Cr^{3+} ; CsMgCl₃; CsMgBr₃; CsCdBr₃.